RASTER-SCAN HIDDEN SURFACE ALGORITHM TECHNIQUES

Griffith Hamlin, Jr.

C. William Gear

Report Number 77-1
January 7, 1977

{NASA-CR-185737) RASTER-SCAN HIDDEN SURFACE NB89-71342
ALGORITHM TECHNIQUES (ICASE) 29 p

unclas
00/61 0224338

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia

Operated by the

untverstTies sPAcE (JSR  REsEArcH AssocTaTION



RASTER-SCAN HIDDEN SURFACE ALGORITHM TECHNIQUES

Griffith Hamlin, Jr.

C. William Gear*

ABSTRACT

Two new techniques are presented for reducing the number of depth
calculations in hidden surface elimination. 7Two new algorithms using the

techniques are compared with three existing algorithms and it 1is shown by

examples that the new techniques reduce the number of multiplications
involved in the depth calculations. A technique for increasing the
parallelism of operations is also presented. This allows the calculation to
be done more rapidly in hardware and\is particulérly useful for generating
line drawings rather than the usual TV raster scan images in the common

raster-scan hidden surface algorithms.

* University of Illinois at Urbana

This report was prepared as a result of work performed under NASA Contract
Number NAS1-14101 while both authors were in residence at ICASE, NASA
Langley Research Center, Hampton, VA 23665.



I. INTRODUCTION.

Many algorithms for hidden surface elimination use a form of raster scan
in which the scene is scanned by a sequence of horizontal planes in order to
generate the projection of the information in each plane onto the
corresponding scan line as shown in FIGURE 1. The advantage of this scheme
is that it allows for fast sorting techniques to be used to preprocess the
information into the order in which it will be needed in the display

computations.

In all of the schemes to be discussed the scene is composed of a number
of plane convex polygons in three dimensions. The two new techniques
described assume that these polygons are non-intersecting, although both
could be modified to compute intersections. All of the techniques discussed
sort the vertices initially into ascending order on their Y coordinates.
This means that as successive planes are processed in increasing Y order,
the new polygon edges that intersect the current scan plane are the edges
incident on the next vertices in the ordered vertex list. Within each scan
plane the algorithms keep track of the X coordinates of each polygon edge
that intersects the plane and keep this list of active edges in ascending
order of X coordinate. It 1is then possible to scan across from left to
right (increasing X value) and determine the depth of each polygon, and
hence determine which 1is in front. Most algorithms then exploit the
property of scan line coherence which is the property. that the relative
depths of polygons do not normally change from one scan line to the next,
and that, furthermore, the ordering in the active edge list does not change
much from one scan plane to the next. Indeed,‘if it is assumed that

polygons cannot intersect, then the relative depths cannot change, and the



RASTER SCAN

Y
? POLYGON P1 SCAN_PLANE
e )
< —
i - = Ve
) -
_ TNTERSECTION OF P2 WITH
) ///*3/ SCAN PLANE = P2 SEGMENT
// s
7
séAN LINE=PROJECTION OF SCAN
va Z  PLANE ONTO X—Y PLANE.
\\»«‘P° VISIBLE = PROJECTION OF P2 SEGMENT
ONTO X~Y PLANE.
— X
P Pl VISIBLE

DIRECTION
TOP VIEW
Pl SEGMENT
P2 SEGMENT
I \l'\
I I
f |
| | '
| ) '
Z:O e - - —_— — —— . [ . 1 J - e o — —
P1 VISIBLE P2 VISIBLE
) FIGURE 1




only times when it is necessary to perform new depth calculations are when
the order in the 1list of active edges changes., This non-intersecting
polygon assumption is reasonable in many environments. For example, the
polygons might represent the surface of a solid body, such as an aircraft.
Since two solid bodies cannot both occupy the same space, polygons on their

surfaces could not intersect, although they might share sides in common.

The two new techniques introduced below use the following ideas:

l. 1In each scan line, a recursive method is used to process the polygons

which insures that overlapping polygons are processed in order of the
distance from the observer (decreasing Z). A stack is wused to keep
track of the polygons which were visible but have been obscured by
closer polygons, and the polygons which are visible are numbered in
such a way that the relative depth of any two polygons which are
compared will be remembered for all future scan planes.

2. When the order of the active edge 1list changes, the visibility of
polygons after the change can often be deduced from the visibility
before the change and an examination of the type of the edges involved
in the change. All edges are classified by marking them as left or
right depending on whether they are on the left or right side of a
polygon as seen by the viewer. For example, when two right edges cross
and initially the 1left one is visible below the intersection, it
follows that the right one is visible and the left invisible above the
intersection. This technique is further enhanced by keeping track of
those edges that are part of two or more polygons. Edges which are
both left and right are classified as middle edges.

These two techniques have been programmed, and the two algorithms are
described below. Both techniques are wuseful for any scene described by
planar convex polygons, but the first'is probably better for scenes in which
there are many unconnected polygons. The second appears to be superior when

the scene is composed of curved surfaces approximated by adjoining planar
polygons. Descriptions of aircraft fuselages, wings, etc., used for

structural and aerodynamic analysis are examples of such pictures.



The technique that increases the parallelism of computation and aids in
the generation of line drawing 1is a technique that identifies the next
largest Y for which any change occurs in th~ active edge list. Since this
is the first scan plane at which a change in the visibility of polygons can
occur, the visibility processing algorithm can advance immediately to that
value and perform the new visibility computation. If a raster has to be
developed, it can be generated in parallel with the new visibility
computations. If a line drawing is to be generated, the lines can be output

each time that they terminate or become invisible.

The next section summarizes the processing common to both algorithms.
The following two sections describe the two algorithms in some detail.
Section 5 discusses the technique for parallelism, and the final section
presents some experimental results which compare the operation counts for

several scenes ranging from 11 to 480 polygons.

2. BASIC ALGORITHM FEATURES.

The objective of any algorithm may be twofold. If a set of very
different views of a scene are to be generated, then the objective is to
reduce the total amount of computation. If, on the other hand, a series of
views, each a small perturbation from the last as in a moving picture, are
to be generated, then the objectives may include making as much of the
process as parallel as possible in order to allow for several mini- or
micro-processors to work on different sections. The objectives may also
include organizing the calculation so that some of the work can be

incremental, that is, so that small changes from one view to the next can be

accomplished by a small amount of work.




The work is broken up into two stages: preprocessing and visibility
céﬁphtatign.“ This not only allows for some parallelism, but also increases
the possibility fé?A‘ihcrémentai computation. Both algorithms do the
rotation (and perspective transformation if desired) in the preprocessing
stage. This can be performed incrementally. Next they sort the vertices by
the Y coordinates. (The first technique only sorts the lowest vertex of
each polygon.) For the first sort, a fast binary or bucket sort can be
used, but subsequent incremental ones should use a variant of the bubble
sort since changes in position will be few. Next, both algorithms compute
coefficients A, B, and C for each polygon so that the polygon lies in the
plane Z=AX+BY+C. If the polygon is “edge on’ to the viewer, it is dropped
from further consideration. These coefficients can also be computed
incrementally. Another step in preprocessing involves computing the slope
of each polygon edge in the scene. This 1is computed as dx/dy which
indicates the change in X in the movement from one scan plane to the next.
(Horizontal lines require some special handling dependent on the details of

the algorithm implementation.)

During the visibility computation, an Active Edge List is maintained in
order of the X coordinates of the intersection of the edges with the current
scan plane. When the scan plane is advanced by increasing Y to the next
higher value, these X values must be updated by adding the inverse of the
slopes of the edges to them. This Qay change the ordering so some testing
must be done. The first algorithm described here saves information about
scan line coherence by numbering the polygons. Consequently, the Active
Edge List can be updated by simply resorting it. Since it is presumably

almost sorted, a variant of the bubble sort provides a rapid method. The



second algorithm uses the information about which elements in the Active
Edge List have changed positions, so it is more convenient to determine when
two elements have to be exchanged and to perform the éppropriate visibility
computation immediately although it is conceptually similar to a bubble
sort. In either case, the basic processing of one scan plane requires a
number of additions equal to the number of active edges plus a like number
of tests to determine if the order has changed. If there are any changes,
additional computation is necessary. When the Y value of the next vertex is
reached, a change must be made in the Active Edge List. This may dinvolve

adding, deleting or replacing edges. The details are algorithm dependent.

- 3.- DESCRIPTION OF STACK ALGORITHM.

The first algorithm employs the first technique to reduce depth
calculations. The dinput data dgscribing the image consists of a set of
planer, counvex polygons, assumed to be opaque. These polygons may not
pierce one another nor may they overlap one another cyclically. The
polygons are numbered and sorted according to the first (lowest Y wvalued)
scan line in which they appear. This produces the SORTED POLYGON LIST. At
any scan line, an ACTIVE LIST is maintained of all polygons that are
intersected by this scan line. Two new edges are added to the ACTIVE LIST
from the SORTED POLYGON LIST on the first scan line in which they appear.
Polygons are dropped from the ACTIVE LIST after processing the last scan
line in which they appear. When the‘end of the SORTED POLYGON LIST is

reached and the ACTIVE LIST is empty, the algorithm terminates.

Two entries are made in the ACTIVE LIST for each polygon, corresponding

to the X-coordinates of the two points at which the scan ray enters and




exits the polygon as it scans the current scan line from left to right.
Before each scan line is processed the ACTIVE LIST is sorted so the X-values

are in left to right order,

Referring to FIGURE 2, the processing of an individual scan line begins
with the first (leftmost) point in the ACTIVE LIST. The polygon entered at
this point is declared to be the CURRENT polygon and procesing begins on it.
To process a polygon means to scan the ACTIVE LIST data which lies within

the left and right boundaries of the polygon, to determine when (if ever)

RECURSIVE PROCESSING-:

ONE SCAN LINE

TOP VIEW
- X
Qv > = o = o P
> a> sP o =~ l,.
> ® AP = - ' * ‘*.
13 e ! S
.-.q.-' -..; 3 ‘\‘
1 -« : -
----.-.._--..
2
—5 Figure 2



the polygon becomes visible, and to generate output data indicating the
X-position on the current scan line where the polygon is visible. As the
algorithm proceeds, a pointer into the ACTIVE LIST keeps track of the

position of the scan ray as it advances from point to point.

When the scan ray encounters the exit of the CURRENT polygon, processing
is terminated on that polygon. At this time the algorithm saves with the
CURRENT polygon the ordinal number representing when the CURRENT polygon was
processed (i.e., three is saved if the CURRENT polygon is the third polygon
on this scan line for which processing has been terminated). This number
will be called the rank of the polygon. Since the stacking mechanism causes
the frontmost polygon of overlapping polygons to have 1its processing
terminated first, the rank of two overlapping polygons may be used on the
next scan line to indicate their relative depths. Ranks of two
non-overlapping polygons are meaningless. Therefore, before using ranks,
the algorithm checks data stored during processing of the previous scan line
to insure that the two polygons overlapped on the previous scan line. After
ranking a polygon, the stack is popped and processing is resumed on the
polygon saved at the top of the stack. It now becomes the CURRENT polygon.
When this occurs the scan ray and Active Edge List pointer jump back to the
position they had when the polygon was pushed onto the stack. This may
cause the algorithm to deviate from a strict left to right processing order.
The algorithm remembers the rightmost X-value for which output has been

produced. 1f, after a pop of the stack, the scan ray jumps to the left, no

output 1is generated until the scan ray again reaches this rightmost value.

1f, before exiting the CURRENT polygon, the scan ray encounters another




polygon which hides the CURRENT polygon, processing of the CURRENT Polygon
is suspended, the Active Edge List pointer is pushed onto a stack, and

processing is started on the newly encountered polygon, which has become

visible.

If, before exiting the CURRENT POLYGON, the scan ray encounters the
right side (exit) or a polygon, the algorithm marks that polygon. If that
polygon is at all visible, it will have been pushed onto the stack. When it
is later popped off the stack the mark will cause the algorithm to

immediately rank it and pop another polygon from the stack.

If, on the other hand, the polygon is completely invisible, it will not
have becen pushed onto the stack. In this case the mark wil have the effect
of deleting the polygon from further processing on the current scan line.
This eliminates some Z-depth calculations involving this polygon. Instead
of rankiﬁg such invisible polygons, the algorithm saves with each of them
the number of the polygon that was visible when the invisible polygon was
éntered by the scan ray. This information may save Z-depth calculations on

subsequent scan lines.

4. DESCRIfTION OF ALGORITHM CROSS

Algorithm CROSS employs the gecond technique. In this algorithm the
fundamental elements in the representation of the data are the vertices.
Each vertex consists of its coordinates X, Y, and Z plus some pointer
information generated in the algorithm. Edges consist of a pair of vertices
plus information generated in the algorithm. Polyéons consist of an

(ordered) list of edges. Polygons must be planar, convex, and



non-intersecting (although the algorithm could be modified to compute
intersections). The wusual preliminary processing is used to compute the
coefficients of the planes of the polygons, to order the vertices by their
Y~values, and to construct lists of edges cénnected to each vertex. In this
case, edges are said to begin on a vertex if their end with the lowest Y
value is on that vertex. They end on the vertex with the highest Y value.
Two lists are cénstructed for each vertex, a list of those edges ending on a
vertex and a list of those beginning on a vertex. The list of beginning
edges is ordered by the slope of the edges so that at higher YY values the
edges will be in a left to right order. The list of ending edges is
unordered. It is used to remove edges from the Active Edge List when the

vertex is encountered. This saves testing each active edge to see if it has

ended.

4,1 EDGE CLASSIFICATION

Because edges can be “shared” between two or more polygons, it is
possible for an edge to be the left or right edge of more than one polygon.
However, it 1is convenient if we associate a unique left and right polygon
with each edge. Therefore, the algorithm creates enough copies of edges so
that no edge is a left or right edge of more than one polygon. It is also
necessary to avoid making more than one copy of an edge a ‘middle’ edge
(because the non intersecting hypothesis could be violated). During part of
the preprocessing, the edges are classified as L, M‘or R and copies are
created if necessary. At the same time, a pair of pointers is created for
each edge indicating its unique left and right polygons. At this time, the
left polygon of a left edge is null, and similarly for ghe right polygon of

a right edge. During the scanning, these unused positions will be taken

10




over for storing pointers to the next visible polygons when the edge fis-
active and visible. Thus, for any active visible edge, the left pointer

will always contain the polygon on the left which is visible, and similarly

for the right pointer.

When an edge is put in the Active Edge List, pointers are stored with
the polygon so that any polygon under the scan line has pointers to its left
and right edges. (This 1is the reason for the restriction to convex

polygons.)

The list of all edges under the current scan line is kept in left to
right order. The X position of each edge is recorded, along with the edge
type (L, M, or R), its visibility (V = visible, I = invisible) and pointers
to the left and right polygons mentioned above. The list must be updated

each time a vertex is encountered or two active edges cross.

4.2 VERTEX PROCESSING

When a vertex is encountered all edges ending on the vertex are removed.
The vertex can be marked visible if any of these edges are visible,
otherwise it is invisible. 1Its position in the Active Edge List is given by
the position of the removed edges. If thgre are no edges to remove, the
visibility of the vertex and its position in the active edge must be
calculated. 1Its position is determined by searching through the active edge
list sequentially. Its visibility is determined by computing the depth of
the visible polygon at that point. (This polygon is known by looking to the

left or right in the list.)

11



Next, all edges begining at the vertex are added to the Active Edge List
and the crossing points to their left and right are calculated if necessary.
If the vertex is invisible, there is urthing else to do. If it is visible,
the visibility of each new edge must be computed. This is necessary because
several polygons could start from a vertex, and these could obscure some of
the edges. The visibility is determined by comparing the edge depth with
the depth of the currently visible polygon on the left. 1If the visible
polygon does not pass through the vertex under consideration, this requirecs
a straightforward depth calculation and comparison. If the polygon does
pass through the vertex, the comparison is done using the coefficients of
the polygons and the slope of the added edge. (The latter is necessary to

avoid the problem caused by the fact that both the polygon and the edge pass

through the vertex under consideration.)

Anytime a middle edge is added its visibility is determined by seeing if
its left polygonbis the currently visible polygon. In addition, when a
visible right edge is added, a search must be made to find the next visible
polygon on the right. This is done using the search described in the next
section, except when this is the last edge from the vertex. In that case,
the next visible polygon can be determined by looking to the right in the

Active Edge List.

4.3 CROSSING ANALYSIS

The principal feature of the visibility computation is the
classification of crossing types. Each active edge is in one of the six
states LV, MV, RV, LI, MI, or RI. This gives a total of 36 possibilities

for the crossing of a pair of adjacent edges., These are shown in Table I

12




. i
Lt o v

below. (ihél'fifst edge‘is the edge with the smaller X value.) A pair of
edges that cross are handled by switching their positions in the active edge
list and then executing the action described in table below. For example,
" when an RV edge crosses an MV edge, the edges switch and the middle edge
becomes invisible. The only other action needed 1is to update the right
polygon pointer of the RV edge. Its new value is the right polygon pointer

of the middle edge.

Table 1

2nd Edge LV MV RV LI MI RI
lst Edge

LV 11 E E Cla Clb Clc
MV I1 E o - - -

RV c2 12 12 - - -

LI - - C3c - - -

MI - - C3b - - -

RI - - C3a - - -

Blank entries indicate no action, otherwise:
I1 - Make first edge invisible
12 - Make second edge invisible
Cl - If the second edge is in front of the polygon visible
to the left of the first edge, make second edge visible.
(Cases a, b, and ¢ are distinguished later).
C2 -~ Compares the depths of the polygons to the left and
right of the first and second edges respectively.
The one with the forward polygon remains visible.
C3 - The same as Cl with first and second, and left and
right interchanged. ' .
E =~ ‘Error’ condition because the edges belong to the same
polygon. The crossing can be ignored.

The left polygon pointer of a left edge that is visible after the
crossing calculation (and similarly for right edges) may have to be

updated. 1In all but two cases, the pointer is available in the other edge.

13



In these two cases, Clc and C3c it is necessary to search to find the
polygon that is now visible between the two edges. This search is done by
processing the active edge from left to right looking for the edge under
consideration while recording entries and exits from polygons. When the
edge under consideration is reached, it is known which polygons span the
intersection point. The depths of all of them must be calculated, and the

most forward chosen as the new visible polygon.

Thus, of the 32 cases that can occur in Table I, 21 of them require
no action, 4 of them require a simple change of visibility and the changing
of a pointer, and 7 cases require a depth comparison of two polygons. In

addition, two of the last seven cases require a search and possibly several

depth calculations in those cases that the visibility changes.

4.4 PREPROCESSING
In addition to the preprocessing described in section 2, this algorithm

has to do the following:

Edge Process
Each edge is examined. 1Its end points are placed in ascending order
and a pair of chains is constructed from each vertex through the edges
so that from each vertex it is possible to find the set of edges that
end on the vertex and the set of edges that start on the vertex. The
set of edges that start on the vertex are sorted in ascending order of
their slopes so that they will be in the correct left to right order in
the Active Edge List when they are entered there.

Polygon Edge Label

Each polygon is examined in turn. 1I1f it is close to ‘edge-on’ it is

14




1)

’ignored, otherwise the coefficients A, B, and C such that Z=AX+BY+C are

calculated. This is done by solving a system of three linear equations
derived from three adjacent vertices on the polygon. If the
determinant of the system is too'sméll,.thevfi;st vertex is dropped and
another added. This is repeated until a solution is found or the
pélygon is ignored as ‘edge-on’ or toe small. If a solution is found,
the determinent of the system (which is available as a byproduct)
indicates whether the polygon is being processed in the clockwise or
counter—-clockwise direction. This information is wused- in two ways.
The first is an option to ignore rear polygons. If this option is
used, polygons must be specified in clockwise order when viewed from
the exterior of the body. A counter-clockwise projection in the x-y
plane indicates that the polygon should be dropped. If the polygon is
not dropped, its edges are examined in sequence. The combination of
the direction of rotation and the direction of the edge (up or down)
indicates whether the edge is a left or right edge. It is marked
accordingly in the list of edges, and the “name’ of the polygon on the
left or right of the edge is stored in the edge list. If the edge is
already marked as being of the same type, a duplicate edge is created.
The edge of the rear polygon is saved as the duplicate edge (which is
distinguishable in the edge list), so that the picture generation can
simply ignore visibility tests on duplicate polygons. The front edge
is easily found by finding the édge attached to the polygon with the
largest value of the parameter A in the case of left edges, or the

smallest value in the case of right edges. If the edge has been marked

‘as of the other type (e.g. R when the new type is L) it is simply

marked as M.

15



5. PARALLEL GENERATION.OF RASTER AND LINE DRAWING TECHNIQUE
Since there is no visibility change from one scan line to the next until
a new vertex is encountered or until‘two edges in the Active Edge List
change places, the Active Edge List can be updated from one scan line to the
next by additions only. There is no need to test to see if there have been
any changes of position. Indeed, there is no need to generate the state of
the Active Edge List for each scan plane, only for those on which a change
occurs. The Y value of the next change is calculated by maintaining a list
of all intersections of adjacent edges in the Active Ldge List unless those
edges were 1incident on the same vertex or were part of the same polygon.
This lisf is maintained in order of the Y value of the intersection.
Consequently the next Y value of a change can be found from the minimum in
this list and the next entry on the sorted vertex 1list generated in
preprocessing. It was found that the amount of arithmetic involved in
computing the intersections was less than the amount of work involved in
additions and tests used to generate successive scan plane Active Edge
Lists. In this technique, a separate processor can be generating the state
of the Active Edge List for each scan line by édditions and generating the
raster outnut from that state. Such a display generator was described by
Erdahl[1l] in 1972. It appears that algorithm CROSS produces the proper type
of input required by Erdahl’s display processor, e.g., a sequence of visible
edge segments sorted by the initial scan line on which they appear and then
sorted by the X-values of the intersection with the scan 1line. The
visibility computation can proceed by advancing to the Y value of the next
change. As implemented, even the X values of the active edge were not

updated except when there was a change of visibility. This was partly in

16




order to allow line drawings fo be genérated easily, but also because it was
found that the X coordinates of active edges were not needed very often, so
that the additional work in calculating intersections from the data
available was more than offset by the reduction in the number of times that
the calculation of the X value had to be made. Each active edge contained

its last calculated X value and the corresponding Y value in the

implementation.

6. COMPARISON OF SEVERAL ALGORITHMS

The two algorithms described here, along with three other scan-line
algorithms [2,3,4] were implemented in FORTRAN on a PRIME~300 minicomputer.
EFach of these implementations counted the number of tests, stored data
accesses, multiplications or divisiqps, and additions required by the
algorithme. Table 2 gives these count;.for the several pictures shown in the
appendix. The. counts included all -processing done on each individual scan
line (the inner loop of all of these algorithms),‘ the processing done in
keeping the list of active polygons in left-to-right order, and the
‘preprocessing done in calculatingvph¢ coefficients of the plane of each
polygon. The counts do not include other preprocessing done in reading the
input polygons or sorting them in order of their topmost vertex. This
Y-sort is performed by all algorithms tested and so could be omitted from
the counts. In assigning counts to each portion of each algorithm it was
assumed that a moderate-”amount of data could be placed temporarily in
registers with essentially instantancous access. For this reason no storage
accesses are included for incrementingviﬁdices and other coutrol pointers.
In assigning additions and multiplications, no additions to:program loop

counters or other such programming functions were included. Such operations

17




are very much implementation dependent, not an integral part of the
algorithm, and so were omitted entirely. It was difficult to collect data
on our FORTRAN version of the Watkins algorithm that could be compared
directly with the other algorithms. The Watkins algorithm was designed to
handle intersecting polygons which the other algorithms do not handle. Our
implementation simplified the Watkins algorithm by removing this feature.
Also, the Watkins algorithm was designed to accept input vertices with a
precision greater than one raster point. OQur input data contained vertices
that were rounded off to the nearest raster point. This sometimes caused
the Watkins algorithm to think that two adjacent polygons overlapped (by one

raster unit), causing some extra calculations.

For all pictures combined, the two algorithms described here performed
fewer multiplications and additions than any of the three algorithms
obtained from the literature. In the case of algorithm STACK, this was

accomplished at the expense of increased testing of previously stored data.

Algorithm CROSS can be used for raster or line drawings, and makes
efficient use of connectivity information. Consequently it appears té be
faster than many other techniques. However, it uses considerably more
storage than other techniques because of the large number of pointers. (The
present implementation uses about 40 16-bit integers and 12 32-bit floating
point values per 4-sided polygon. Ho;ever, it is an- expérimental version
with an unnecessary number of pointers to allow any variation to be tried.
A better implementation could reduce this to approximately 22 16-bit

integers and 9 32-bit floating point values per 4-sided polygon.)

18




A major problem witﬁ algorithmeRdSS is due to the fact that it does use
the éonnectiviﬁy informétion effectively. Once an error in .viéibility ia
made, it can propagate through the figure. This causes particular problems
if two verticés are placed in the same physical location, or close enough
that round-off error will take its toll. If the algorithm is told that two
points are the same, the connectivity and slopes of the polygons can be used
to determine visibility, otherwise a simple depth calculation must be made,
and round-cff errors could yield the wrong conclusion. Discarding very
small polygons helps with this problem. The alternative is to coalesce very

close points and give them the same ‘name’ in the data structure.

19



References

[1] Erdahl, Alan C., "Displaying Computer Generated Half-tone Pictures
in Real Time," Computer Science Department, University of Utah, RADC~
TR-69-250, 1972.

[2] Bouknight, W. J., "A Procedure for Generation of Three-dimensional
Half-toned Computer Graphics Presentations," Communications of the ACM,
Vol, 13, No. 9, September 1970, pp. 527-536.

[3] Romney, G. W., G. S. Watkins, D. C. Evans, "Real-time Display of
Computer Generated Half-tone Perspective Pictures,' IFIP, 1968, pp. 973~
978.

[41 Watkins, G. S., "A Real-time Visible Surface Algorithm," Computer
Science Department, University of Utah, UTECH-~Csc~70-101, June 1970,

-20-




Algorithm

STACK
CROSS
Bouknight
Romney
Watkins

STACK
CROSS
Bouknight
Romney
Watkins

STACK
CROSS
Bouknight
Romney
Watkins

STACK
CROSS
Bouknight
Romney
Watkins

STACK
CROSS
Bouknight
Romney
Watkins

STACK
CROSS
Bouknight
Romney
Watkins

Memory

53983
14471
50175
52290
85641

259686
79723

242524
261167
345671

298237
86229

273648
291893
332588

70503
26415
71787
75012
121989

266557
115515
244130
260708
358953

41041
138996
39599
43984
108840

Tests

27701
3882

16534
13388
64385

131112
22680
85682
91720
262095

156147
22090
95549
99956
308619

36788
7032

23949
22320
97624

131252
31429
39343
93903
252930

19712
5014

12921
11753
89533

CHANNEL PICTURE

Mult/Div

350
377
10008
1114
15537

Additions

5352
2922
14142
5248
35817

CONE PICTURE

97863
5639
48787
36233
54599

23752
8753
61471
48917
130615

CYLINDER PICTURE

7767
4000
55295
36569
72607

23913
11950

71173

32447
169599

BOTTLY. PICTURE

1239
713
14501
4979
24431

AIRCRAFT

13180
7506

44976
32606
56236

5459
4820
19249
10055
56155

PICTURE

25672
12489
55756
43446
130254

SQUARLS PICTURE

203
223
5963
723
30710

TABLE

21

3816
3207
9431
4191
67078

2.



~
~.
\\_‘ Y

T

TINNVHO

22













26

AIRCRAFT




STUVNdS

27




